flowchart TD
subgraph FURNACE["INDUCTION FURNACE"]
SLAG[/"Slag Al+Mg+Na+K<br/>from MRE"/] --> IND["EQU-024<br/>Heating to 1200C"]
end
IND --> |"Vapors (all except Al)"| K_COND
subgraph CONDENSERS["CONDENSER CASCADE"]
K_COND["K Condenser<br/>EQU-031<br/>700-759C"] --> |"Na+Mg vapors"| NA_COND
NA_COND["Na Condenser<br/>EQU-032<br/>800-883C"] --> |"Mg vapors"| MG_COND
MG_COND["Mg Condenser<br/>EQU-033<br/>1000-1091C"]
end
K_COND --> K_OUT[/"K liquid<br/>to NaK alloy"/]
NA_COND --> NA_OUT[/"Na liquid<br/>to NaS batteries"/]
MG_COND --> MG_OUT[/"Mg liquid<br/>to Al-Mg alloys"/]
IND --> |"Residue"| AL_OUT[/"Al liquid<br/>to mirrors, windings"/]
style FURNACE fill:#fff3cd
style CONDENSERS fill:#d4edda
style K_OUT fill:#cce5ff
style NA_OUT fill:#cce5ff
style MG_OUT fill:#cce5ff
style AL_OUT fill:#cce5ff
3.1.3 Slag Distillation
Overview
| Parameter | Value |
|---|---|
| Input | Al/Mg slag from MRE cell |
| Input volume | ~251 t/day |
| Metal output | ~111 t/day (Al 42 + Mg 48 + Na 18 + K 3) |
| Final slag | ~138 t/day |
| Energy consumption | Induction furnace + condensers |
Slag Processing (Al/Mg/Na/K)
Slag from the MRE cell is a mixture of light metals that floated to the surface of the melt.
Source of Na and K
Feldspars are the main mineral in regolith (40-60%). During electrolysis, they decompose into constituents:
| Mineral | Formula | Yields |
|---|---|---|
| Albite | NaAlSi3O8 | Na + Al + Si + O2 |
| Orthoclase | KAlSi3O8 | K + Al + Si + O2 |
Separation occurs by vacuum distillation - each metal boils at its own temperature.
Slag Composition (600 t regolith/day)
| Metal | Quantity | % of regolith | Boiling point |
|---|---|---|---|
| Magnesium (Mg) | ~48 t/day | 8% | 1091C |
| Aluminum (Al) | 42 t/day | 7% | 2519C |
| Sodium (Na) | ~18 t/day | 3.3% | 883C |
| Potassium (K) | ~3 t/day | 0.5% | 759C |
Separation Principle (Continuous Cascade)
Important: This is a continuous process, not batch. Slag flows continuously, all condensers operate simultaneously.
How It Works
- Slag continuously enters the induction furnace (1200C)
- At 1200C all volatile metals vaporize simultaneously - K, Na, Mg (with different intensity, proportional to vapor pressure)
- Mixed vapors rise into the condenser cascade
- Each condenser maintains its own temperature:
- EQU-031 (700-759C): K condenses, Na+Mg vapors pass through
- EQU-032 (800-883C): Na condenses, Mg vapors pass through
- EQU-033 (1000-1091C): Mg condenses
- Al remains liquid in the furnace (Tb = 2519C) and is continuously drained
Analogy: This works like a rectification column in oil refining - but for metals. Different fractions condense at different heights in the column (= at different temperatures).
Why Vacuum Helps
In vacuum, boiling points decrease. At 10^-3 atm pressure: - Na boils at ~500C (instead of 883C) - Mg at ~700C (instead of 1091C) - This saves energy and increases the difference between condensation temperatures
Distillation Column Diagram
DISTILLATION COLUMN (slag processing section)
+-------------+
| Induction | Slag Al+Mg+Na+K from MRE
| furnace |<---------------------------
| EQU-024 |
+------+------+
| Vapors (all metals except Al)
v
+-------------+
| Potassium | K condenses (Tb=759C)
| condenser |---> K liquid -> NaK alloy
| EQU-031 |
+------+------+
| Vapors (Na+Mg)
v
+-------------+
| Sodium | Na condenses (Tb=883C)
| condenser |---> Na liquid -> NaS batteries
| EQU-032 |
+------+------+
| Vapors (Mg)
v
+-------------+
| Magnesium | Mg condenses (Tb=1091C)
| condenser |---> Mg liquid -> Al-Mg alloys
| EQU-033 |
+-------------+
| Residue in furnace
v
+-------------+
| Aluminum | Al does not evaporate (Tb=2519C)
| liquid |---> Al -> mirrors, windings, housings
+-------------+
Equipment
Induction Furnace (EQU-024)
Heats slag to 1200°C, MgO ceramic lining.
Potassium Condenser (EQU-031)
Operating temperature 700–759°C. Cooling: radiator (radiation to space).
Sodium Condenser (EQU-032)
Operating temperature 800–883°C. Similar to K, but larger (Na is 7× more than K).
Magnesium Condenser (EQU-033)
Operating temperature 1000–1091°C. Largest unit (Mg — 48 t/day).
Alloys and Flow Table
| Alloy | Composition | Source 1 | Source 2 | Application |
|---|---|---|---|---|
| Pure Al | 100% Al | Ind. furnace (residue) | - | Mirrors, foil |
| Al-Mg (housings) | 90% Al + 10% Mg | Ind. furnace | Mg cond. | Lightweight structures |
| NaK (coolant) | 78% K + 22% Na | K cond. | Na cond. | Cooling |
| Fe-Mn (steel) | 94% Fe + 6% Mn | MRE cell | - | Frames, rollers |
| Pure Si | 100% Si | Zone melting | - | Electronics |
Storage After Condensation
Metal condenses in liquid state and flows into heated accumulator crucibles. There it is maintained liquid until transfer to casting/forming.
| Metal | Melting point | Storage temp | Heating type |
|---|---|---|---|
| K | 63C | >70C | Electric (low T) |
| Na | 98C | >110C | Electric (low T) |
| Mg | 650C | >700C | Induction |
| Al | 660C | >700C | Induction |
Why induction heating: - Contactless - no heater wear - Uniform heating of entire volume - Easy to regulate - Works with any metals
Accumulator crucibles: - Material: MgO ceramics - local production (withstands all metals) - Capacity: 1-2 t (buffer for several hours) - Drain: bottom stopper or MHD pump
Note: K and Na are stored in sealed containers — they react with oxygen (dome atmosphere is O₂). Double walls + leak detectors.
Product Output
| Product | Form | Application |
|---|---|---|
| Aluminum (Al) | Liquid -> ingots, wire | Mirrors, housings, motor windings |
| Magnesium (Mg) | Liquid -> ingots | Lightweight alloys (Al-Mg), MgO ceramics |
| Sodium (Na) | Liquid -> sealed ampules | NaS battery anode |
| Potassium (K) | Liquid -> sealed ampules | NaK coolant |
| NaK alloy | Liquid metal (stored liquid) | Electronics cooling |
NaK eutectic: Alloy of 78% K + 22% Na - liquid at -12C. Ideal coolant for space: does not freeze, high thermal conductivity, requires no pressure.
Sulfur Distillation
Obtaining sulfur for NaS batteries.
| Parameter | Value |
|---|---|
| Source | Sulfides in regolith (troilite FeS) |
| Method | Vacuum sublimation at 450C |
| Condenser | Cold surface (shadow), sulfur deposits as yellow crystals |
| Remelting | Liquid sulfur (>115C) -> to battery workshop |
Note: Sulfur is extracted on the titanium line - troilite (FeS) is part of the magnetic fraction.
Sources
- Vacuum Distillation of Metals - Industrial metal separation methods
- Alcoa, Rio Tinto - Aluminum producers
See Also
- Regolith Processing - process overview
- MRE Electrolysis - source of Al/Mg slag
- Batteries - NaS batteries from sulfur and sodium