flowchart TD
subgraph INPUT["MAGNETIC FRACTION"]
MF[/"Ilmenite + Troilite<br/>33 t/day"/]
end
subgraph SUBLIMATION["SULFUR SUBLIMATION"]
MF --> TS["Heating to 450°C<br/>(in vacuum)"]
TS -->|"S↗"| S_COND["Condenser"]
S_COND --> S_OUT[/"Sulfur<br/>~18 t/day"/]
end
subgraph ROASTING["OXIDATIVE ROASTING"]
TS -->|"FeS → FeO"| OX["Roasting 900°C<br/>+ O₂"]
OX --> FeTi["FeO + TiO₂"]
end
subgraph SEPARATION["MAGNETIC SEPARATION"]
FeTi --> SEP["Magnetic<br/>separator"]
SEP -->|"magnetic"| FE_OUT[/"Fe₂O₃<br/>→ MRE"/]
SEP -->|"non-magnetic"| TI_OUT[/"TiO₂<br/>→ electrochromics"/]
end
style SUBLIMATION fill:#fff3cd
style ROASTING fill:#f8d7da
style SEPARATION fill:#d4edda
3.1.4 Titanium Line
Overview
| Parameter | Value |
|---|---|
| Input | Magnetic fraction (ilmenite FeTiO₃ + troilite FeS) |
| Output | TiO₂, S, Fe₂O₃ |
| Throughput | ~33 t/day |
| Purpose | Mirror electrochromics |
Line Purpose
Extraction of TiO₂ for mirror electrochromics. Titanium (<1% in Mercury’s crust) is found in ilmenite (FeTiO₃) — a weakly magnetic mineral.
| Parameter | Value |
|---|---|
| TiO₂ requirement | 1 kg × 600 mirrors = 0.6 t/day |
| Available (Ti <1%) | ~4.5 t TiO₂ from 270 t regolith |
| Reserve | ×7.5 (surplus) |
Process Diagram
| Stage | Description | Temperature |
|---|---|---|
| Sulfur sublimation | Heating magnetic fraction in vacuum | 450°C |
| Oxidative roasting | Oxidation FeS → Fe₂O₃ | 900°C |
| Magnetic separation | Separation of Fe₂O₃ (magnetic) and TiO₂ (non-magnetic) | — |
Sulfur Sublimation
Troilite (FeS) is a source of sulfur for NaS batteries.
| Parameter | Value |
|---|---|
| Reaction | FeS → Fe + S↑ (at 450°C in vacuum) |
| Sulfur evaporates | Condenses on cold surface |
| Output | ~18 t sulfur/day |
Sulfur condenser: - Cold surface in shadow (-150°C) - Sulfur deposits as yellow crystals - Remelting: liquid sulfur (>115°C) → to battery workshop
Note: Vacuum reduces sulfur sublimation temperature, saving energy.
Oxidative Roasting
After sulfur removal, a mixture of FeO and FeTiO₃ remains. Roasting in the presence of oxygen:
| Reaction | Product |
|---|---|
| 2FeO + ½O₂ → Fe₂O₃ | Hematite (magnetic) |
| 2FeTiO₃ + ½O₂ → Fe₂O₃ + 2TiO₂ | Hematite + rutile |
Parameters:
| Parameter | Value |
|---|---|
| Temperature | 900°C |
| Atmosphere | O₂ (from MRE cell) |
| Duration | 2-4 hours |
Magnetic Separation Fe₂O₃/TiO₂
After roasting, the mixture is separated by a magnetic separator:
| Fraction | Magnetic properties | Product |
|---|---|---|
| Fe₂O₃ (hematite) | Magnetic | Returns to MRE cell |
| TiO₂ (rutile) | Non-magnetic | Goes to electrochromics |
Note: Fe₂O₃ is valuable feedstock, returned to the main cycle for iron extraction.
Mirror Electrochromics
TiO₂ is used to control mirror orientation in space:
| Component | Function |
|---|---|
| TiO₂ layer | Changes reflectivity when voltage is applied |
| Effect | Uneven light pressure → torque |
| Control | Mirror tilting without engines or fuel |
Principle: A 100×100 m mirror with electrochromic coating. When voltage is applied to one edge, reflectivity decreases → light pressure becomes uneven → the mirror slowly rotates. This allows directing reflected light to the receiver without fuel consumption.
Electrochromic layer mass: ~1 kg/mirror (out of 116 kg total mass).
Advantages of Electrochromic Control
- No consumable fuel
- No mechanical parts
- Powered by solar panels
- Service life = mirror service life
Product Output
| Product | Quantity | Application |
|---|---|---|
| TiO₂ (rutile) | ~3 t/day | Mirror electrochromics |
| Sulfur (S) | ~18 t/day | NaS batteries |
| Fe₂O₃ (hematite) | ~12 t/day | Return to MRE → iron |
Sources
- MESSENGER Mission (2011-2015) — Mercury surface composition data
- Electrochromic Materials — TiO₂ coating research
- Space Mirror Control — Space mirror orientation technologies
See Also
- Regolith Processing — process overview
- Energy Storage — NaS batteries from sulfur
- Mirrors — construction and control